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Viscoelastic squeeze-film flows - Maxwell fluids 

By N. PHAN-THIEN AND R. I. TANNER 
Department of hlechanical Engineering, rnivers i ty  of Sydne) . S S M’ 2008 Australia 

(Rrcrived 14 May 1982 and in revised form 12 November 1982) 

An exact solution for the squeeze-film motion in an upper convectcd M a x ~ c l l  fluid 
is given for both the plane and axisymmetric cascs. Inertia and viscoelastic cffec.ts 
are included, and it is shown that the solution depends only on the product of the 
Weissenberg and Reynolds numbers. Solutions arc generated for values of this  
product u p  to 500 without numerical problems. The solutions show wave propagation 
and show a reduced load capacity relative to the Newtonian case. 

1. Introduction 
We consider two parallel plates approaching or receding from one another (figurc 

1 a) .  The gap between the plates is filled with fluid, and we seek to calculate the forces 
needed to maintain the motion. Although the plates may have any planform. we shall 
only deal with the axisymmetric ease (circular platcs of radius a )  and the planc casc 
(long two-dimensional strip plates of width 2L) .  The flou is of considerablc intcrcst 
in that  it models the action of a lubricant in a bearing under unsteady load conditions 
and is also relevant to the interpretation of various plastometer measurements. 

The mechanics of a thin film of fluid being squeezed between two parallel platcs 
has a long history, dated back to Stefan (1874) and Hcynolds (1886). Thc flou forms 
the basic configuration of a commercial viscometer known variously as thc .parallel- 
plate viscometer ’ (Diennes & Klemm 1946), the ‘ compression plastomcter ’ (Xlooney 
1958), the ‘parallel-plate plastimeter’ (Scott 1931. 1932) or simply the ‘p1astomctt.r ’ 
as i t  is known today. Early workers in this field were primarily concerned with 
Newtonian fluids in creeping flow (Stefan 1874, Reynolds 1886). In  the works of 
Jackson (1962), Kuzma (1967), ,Jones & Wilson (1975). Grimm (1976). Mac3Donald 
(1977) and the recent work of Hamza & MacDonald (1981) inertia was invlut3cd in 
the Newtonian flow calculation. However, many common lubricants are non- 
Newtonian, and certainly most substances tested in plastometers arc not Xew tonian , 
hence the investigations of the flow need to be extended in this direction. Early 
investigations of inelastic non-Newtonian fluids were madc by Scott (1931, 1932) 
using a power-law model and the traditional assumptions of lubrication kinematics. 
It is believed that these results are valid for this class of fluids for small (gap/platc- 
radius) values. The problems of viscoelastic non-Newtonian fluids in inertialess flow 
were investigated by Tanner (1 965), who assumed a type of nonlinear Maxwcll motlrl, 
and more recently by Kramer (19741, who used a diffcwnt Maxwell model (thc Lodge 
rubber-like fluid). Tanner (1965) assumed that the flow is locally an unsteady shear 
flow, but in fact the flow is a mixture of stretching and shearing, and is kincmaticdly 
complex. It is possible to perform an analysis for the linear viscoelastic case, but 
neither this analysis not the analysis of Tanner (1965) really explains the discrepancy 
between such theories, all of which show a rPduction in the force needcd to push the 
plates together (relative to the inelastic cases analysed by Scott), and thccmhancement 
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FICVRE 1 .  (a) Poordinate system for problems. [XI, [y], [LJ refer to plane case, r ,  z ,  a to axisymmetric 
case. (6) Horizontal velocity u/ tr  V at Re = Wi = 0.01 at different times 7 .  The classical lubrication 
approximation is established from the onset of the motion. 

of load found experimentally by Leider (1974) and Grimrn (1978). It was  suggested 
by Mctzner (1968) that all the observed increases in load arosc from thc stretching 
motion in the fluid; this factor was ignored by Tanner (1965) and Kramcr (1974). 
To perform a rough check on this idea we can assume that the fluid does not stick 
to the plates. Then a simple analysis of the resulting unsteady shear-frec flow shows 
little effect to assist in interpreting the experiments ; some load enhancement is 
predicted, but it is only of the order of (gap/radius)2 and hence is insignificant in most 
practical cases. Since many of the calculations mentioned arc approximate, there is 
need for a more exact analysis of the squeeze film, and this is the object of the present 
paper. 

I n  this paper we report some exact (including inertia but neglecting body-force and 
edgc effects) plane and axisymmetric solutions to the squeezing flow of a nonlinear 
Maxwellian liquid. Perturbation solutions are also developed up to terms of first order 
in the Weissenberg and the Reynolds numbers. Full numerical solutions arc reported 
for the special case where the squeezing velocity (velocity of approach of the plates) 
is constant. 
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2. Formulation of problem 
The problem we are concerned with is that of a lubricant wntained between tu o 

parallel plane surfaces. The bottom plate is fixed and the top plate is set in motion 
at  the instant t = O +  . The thickness of the lubricant film at  any instant of time t 
is denotcd by h( t ) ;  the top plate is then moving with a velocity of dh /d t .  The fluid 
is assumed to be incompressible, so that V .  u = 0, and the equation of motion is 
V . Q = pdu/dt ,  where the velocity vector is u; the total stress is 6, and p is the fluid 
density. Body forces such as gravity are ignored here. The constitutive equation for 
the fluid is written in terms of the extra stress tensor S, wherc Q = S- PI, P being 
the pressure and I being the unit tensor. The lubricant is assumed to behave like an 
(upper convected) incompressible Maxwellian liquid. That is, if the velocity gradient 
is LT = Vu (I& = aui/8zj) and the strain rate is D = +( L +  LT), where the superscript 
T denotes a transpose, then the stress S is given by 

S + h ( a t S + u . V S - L S - S L T )  = ZyD, (1) 

in which h is the (constant) relaxation time and y is the (constant) viscosity of the 
liquid. Using a coordinate system with the origin fixed a t  the centre of the bottom 
plate ({z, y} for the plane case, with y perpendicular to the plates; and { r ,  8, z }  for the 
axisymmetric case, with z perpendicular to the plates, figure l a ) .  the relevant 
boundary conditions for the velocity u ((u, w) for the plane case, and (u, 0, w )  for the 
axisymmetric case) are: 

u = v = w = 0  ( y = z = O ) ,  I 
(2) 

For t < 0, the top plate is a t  rest, /L = 0 and h = h,; for t >' 0 the motion at the top 
plate h(t) is prescribed. Thc problem is time-dependent and we must also supply initial 
conditions. We shall assume that the fluid is at rest originally: 

u(x, t )  = 0 ( -  00 < t < 0, all x). (3) 

We will show that the velocity fields 

constitute exact solutions to the squeezing flow of a Maxwellian fluid, neglecting body 
forces and edge effects (the plates are assumed to be infinite in extent), in the plane 
and axisymmetric cases respectively. In  (4) and (5) I' is a scale velocity, say thc 
magnitude of the initial velocity of the top plate, and f is a function of time and the 
vertical distance from the bottom plate, as yet undetermined. Note that (4) and (5) 
satisfy the conservation of mass identically, and f may be regarded as a stream 
function. The structure of (4) and ( 5 )  is that they do not permit a material plane to 
buckle. For a generalized Newtonian fluid whose viscosity function is not of the 
power-law type Brindley, Davies & Walters (1976) showed that a material plane H ill 
experience buckling. It is not clear that this is a severe defect in the work of Scott 
(1931), who did assume a non-buckling velocity field, and in the present paper wc 
shall not concern ourselves with this question. In  cases where R/h  % 1 it seems likely 
to be a good approximation to the true field in every case. I n  the present work we 
find no need to postulate buckling of the planes a t  any Weissenberg number. For 
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brevity we will non-dimensionalize y (or z )  by h,, the initial film thickness, and the 

z vt time by V/h,, so that 
< = Y  or -, 7 ' -  

and denote derivatives with respect to 7 by a dot and derivatives with respect to 5 
by a prime. 

2.1, Plane squeezing $ow 

h0 h, ho ' 

Assuming (4), one finds that the constitutive equation ( 1 )  becomes 

(6) 

( 7 )  

s x x - X ~ a x s x x + f s ~ , + 2 ~ s x x +  --f"sx, - -2-7 ,  11v 
2x h0 ? - h, 

sx,-x~axsx,+fs;,+ - f v , ,  = - 11V.f hi ff, 
2 

ho 

~ , , - x f a x ~ , , + f ~ ~ , - 2 ~ ' ~ , ,  (8) 

where Wi = h V/ho is the Weissenberg number. Conservation of linear momentum 
requires, neglecting body forces (but not inertia), 

- @L(y-p+fy)  = -a,~+a,s,,+a,s,,, (9) 
hi 

(10) 
P v2 
ho 

~ ( j + f f ' )  = - a, P+ ax x,, + a, s,,. 

It may be shown that (6)-(10) admit a solution of the form 

x,+ ~ i ( X - , + f ~ i + 2 f ' ~ , )  = - 2 7 ,  

x, + wqX2 + fX ; ,  + 2f "T)  = 0,  

where, from (6)-($) ,  

T+ Wi (F- f 'T+fT '+ f"Y)  = -f", 

Y+ ~ i ( Y + f Y - 2 f ' ~ )  = 2f'. 

Furthermore, from (9) and (10) one finds that for compatibility 

where 

is a function of time only; that  is 

2X; + T + Re(!"- f ' f " + f f " ' )  = 0. 

In  (18) and (19) Re = pVh,/q is the Reynolds number. 
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To sum up, the solution to (14)-( 17) and (19) subject to the boundary conditions 

f ( 0 )  = f ’ ( 0 )  = 0, f ’ ( H )  = 0, f ( H )  = H, (20) 

and some initial conditions, constitute an exact solution to the plane squeezing flow 
of a Maxwellian fluid. In  (20) we have normalized the film thickness by ho: 

H ( 7 )  = h(t) -, H ( 0 )  = 1 ,  Ei(0+) = - 1 .  
h0 

If the Weissenberg number is identically zero, the governing equations reduce to 

Re(!’’ - f ’ f ”  +ff”’) = f i”, 
which was considered by Jones & Wilson (1975), MacDonald (1977) and Hamza & 
MacDonald (1981). Note that, by resealing 7 and 5 and the stresses, one can make 
the coefficient of the inertia term in (19) unity, and it is found that the evolution of 
f is governed by the product Re Wi .  (The stresses are, of course, different. This remark 
also applies to the axisymmetric case discussed below.) We shall exploit this feature 
in checking our numerical works. 

2.2. Axisymmetric squeezing $ow 

In a similar manner it is found that (5) is an exact solution to the axisymmetric 
squeezing flow of a Maxwellian fluid. In  this case the stresses are given by 

in which 
R, + W i ( R ,  + f l z i  + f ‘Rl)  = - f ’, (22  1 
R,+ Wi(R,+fR;+f”T) = 0 ,  (23 ) 

0 + W i ( 0  +fa’ +f’@) = - f ’ ,  (24) 

z+ Wi(i+fZ’-2f’Z) = 2f‘, (25)  

T+ Wi(P-f’T+fT‘+$’”Z) = -if”. (26) 

Compatibility requires that 0 = R,, which is automatically satisfied if initial 
conditions on 0 and R, are the same, and 

where 

p(7)+function of 5 

p ( 7 )  = 3R,+T’+~Re(f’-&af’2+ff’’) 

is a function of time only, viz. 

3R;+T”+$Re(f”+ff”’) = 0. 
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The solution of ( 2 2 ) ,  ( 2 3 ) ,  ( 2 5 ) ,  (26) and (28) subject to the boundary conditions (20) 
is an exact solution to the axisymmetric squeezing flow of a Maxwellian fluid. 

2.3. Normal force on the top plate 

Although the solutions discussed above are exact only for an infinite squeeze-film 
bearing, we feel that  they form an excellent approximation to the fields in a finite 
squeeze-film bearing where either the bearing length 2L or the bearing radius a is very 
much greater than ho, the initial film thickness. One is interested in the load-carrying 
capacity of the bearing, given by 

L 

- L  
W, = (P-S,,)dx a t  y = h ( t ) ,  

or in the axisymmetric case by 

W, = 27rr(~- s,,) dr at z = h(t). 

If the above integrals are evaluated a t  y = z = 0 then t,he loads WB on the bottom 
plate are obtained; these differ from those on the top plate by the vertical mass 
acceleration of the fluid in the gap. 

In  the plane case one notes that 

0 

where p ( 7 )  is given by (18), 

and Po is a constant of integration. To fix Po we assume that the radial traction is 
zero a t  the edges: 

(-P+S,,)dy = 0 ( X  = +L) ,  

which implies 

where the overbar denotes an average over y E [0, h(t)] ,  viz 

The load on the top plate can now be found, and one has 

Note that, owing to inertia, the load on the top and the bottom plate are different, 
so that 

Furthermore, by neglecting terms O(h:/L2), the dimensionless load is given by 

w = W T $ g  = - p ( 7 )  + 3 X 2 ( 7 ) .  
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The same argument can be applied to the axisymmetric case, and one has 

where of course p ( 7 )  is given by ( 2 7 )  and R, is the z-average of R,. 

2.4. InitiuE conditions 

In  numerically integrating the governing equations we will consider only the case 
where the upper plate is moving impulsively a t  constant velocity B at  time 
t = O(&(T) = - 1). Such motion is only possible when the normal force a t  t = O +  is 
infinite (even for finite plates) and has been considered by Jones & Wilson (1975) and 
Hamza & MacDonald (1981) for a Xewtonian fluid. To discover initial conditions 
relevant to impulsive motion we integrate the governing equations from 7 = 0 to 

(31) 
7 = O +  to find that 

f (7 ,0+)=-< ,  [ + o , H .  

Thus, except for two extremely thin boundary layers near the plates, the fluid will 
move sideways as a plug a t  any station z. Note that (31) is the inviscid (shear-free) 
solution. 

Assuming the stresses to be continuous at  time 7 = 0, one can integrate the 
constitutive equations (14)-( 17)  and (22 ) - (26 )  exactly to obtain the following initial 
conditions on the stresses for plane flow at 7 z O +  : 

X , = X , = T =  Y = O ,  

and, for axisymmetric flow a t  7 z O +  , 
R 1 -  - R  2 -  - O = Z = T = O .  

3. Perturbation solutions 
Asymptotic results can be found in the case where both Re and Wi are small, whence 

one can write 
f = fo+Ref lO+ Wifo ,+O(Re2,Re  Wi, Wi2), 

and similar expressions for the stresses. The zeroth-order term (for both plane and 
axisymmetric case) is the classical lubrication approximation : 

In the plane squeezing flow, non-Newtonian effects do not, alter the velocity field 
(fol = 0), whereas in the axisymmetric case 

where 6fi2 6H2 
5H3 5H4' a%=- a, = __ 

However, inertia alters both the plane and the axisymmetric velocity fields : 

in the plane case, 
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and in the axisymmetric case 
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H : 3 H z  p -y-;-. H 5H2 p - - - -+-  
5H 14H2’ 4 - 2 0  J5H 3 -  

The dimensionless load parameter becomes in the planc: case 

H H 
H 3  H? 

w = - l 2 - + + 1 % W i - + + e  +O(IZe2,ReWi, W i 2 ) ,  

and in the axisymmetrio case 

At zero Weissenberg number our axisymmetric perturbation solution (33) and (34) 
reduces to that of Kuzma (1967) and of Jones B Wilson (1975). It is to be noticed 
that, if both the velocity and acceleration of the top plate are negative, then inertia 
always increases the load whereas elasticity always decreases the load. Our latter 
conclusion agrees with those of Tanner (1965) and Kramer (1974); both of these 
authors ignored inertia contributions. Furthermore one notes that in both plane and 
axisymmetric cases the coefficients of the Weissenberg terms in the expressions for 
the dimensionless loads are much larger than the corresponding coefficients of the 
Reynolds terms. Thus one expects that  elasticity soon dominates the flow and that 
our perturbation solution can only be valid for very small Weissenberg numbers. I n  
contrast, in the corresponding Newtonian problem the load computed from the 
first-order perturbation theory shows good agreement with experimental results over 
a range of Reynolds numbers, extending to a t  least 60 (Kuzma 1967). In  order to 
see when elasticity effects become important we note that the Reynolds number in 
a typical squeeze-film bearing is often greater than unity. Also W i  = O(Re) if the 
relaxation time h - &/q.  For a typical dilute solution where p = 1000 kg/m3, 
q = 0.1 Pa s and ho = 1 mm, it is found that h z 0.01. Thus a slightly non-Newtonian 
fluid may be expected to show dramatic departures from Newtonian behaviour in 
squeeze-film flow. Finally, because of the quasistatic nature of the perturbation 
solution we expect that it is valid only a t  large time, i.e. when r is considerably greater 
than (Re Wi) i ;  the latter timescale is the characteristic time for a linear transverse 
shear wave to travel one film thickness. 

4. Numerical solution 
To extend the perturbation solutions to any valuts of W i  and K e  a numerical 

solution of the governing nonlinear equations is necessary. Before describing the 
numerical scheme we note that if the time r and the space 5 are scaled with respect 
to Be (or WiCl) and the stresses arc scaled awordingly (Xl, K,, Y .  Z -+ KeX,. IZeK,, 
Re Y ,  R e Z ;  T-+ Re2T; X,,  R, -+ Re3X2, Rp311, and r ,  5 + Re-%, then thc govern- 
ing equations are unchanged except that  the equivalent Reynolds number is 1 and 
the Weissenberg number is Wi BP. Note that the boundary conditions (20) are 
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preserved in this transformation. Thus as long as Re and Wi are not identically zero 
then we have the following results : 

f ( [ , r ;  He,Wi) = f(Re<, Rer; 1, ReWi) ,  

p ( r ;  Re,Wi) = R e p  (Rer;  1, ReWi). 

( 3 5 )  

(36) 

Equation (35) states that  the evolution of the velocity field a t  a Weissenberg number 
Wi and a t  a Reynolds number Re is identical to that at a Reynolds number of unity 
and a Weissenberg number Re Wi. The time-scale in the second problem is Rer. This 
feature ran be used to  reduce numerical runs and checking that our codes work 
satisfactorily. 

We employ an explicit numerical scheme which starts at the initial condition ( 3 1 )  
and stops when the time 7 reaches 0.6 (film thickness 0.4). First-order finite-difference 
formulae are used for time derivatives, and central-differences formulae are used for 
spatial derivatives. On the [-axis (0 < < 6 H ( t ) )  we select uniform nodal points at 
[% = iAh, i = 0, 1 ,  . . . , N ,  where Ah = H / N .  The variables are evaluated a t  time 
rj  = j A t ,  where j = 1,2,  ... . At time 7 = 0 we impose the initial condition (31) and 
zero initial conditions for the stresses. We consider only the impulse-starting casc 
where 

H ( r ) = l - ~ ,  7 > 0 + ,  

but our program can be easily modified to include any time-dependent H ( 7 ) .  Denoting 
by fr the nodal value at Q and at time 7,, we have for the plane casc, from (191, 

where Aij is the Rouse [N- 1, N- 11 matrix 

2 (i =j), 
- 1  (i = j f l ) ,  

and a? is the expression 1 

Re 
- ( 2 X i  + 7''') - f 'f" + f f "' 

evaluated at node Ci and at time 7,. 
Second-order finite-difference formulae for spatial derivatives are employed 

To account for boundary conditions (20) we invent fictitious nodes a t  [- = -Ah  and 
at cN+* = ( N +  1 ) A h  such that 
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FIGITRE 2. Vertical ( - f )  and horizontal velocity ( - j ' )  a t  Re = 1 and U'i = 0 . 1 .  The solid line in 
(0) is the cdassical lubrication approximation. Note the radial plug flow in the central region and 
that  f '  is not symmetric about 5 = $ H .  

At 5 = 0, f = fc = 0, and, a t  5 = H ,  f = j'g = H = - 1. Since the inverse of the Rouse 
matrix is the Kramers LlV- 1. N -  11 matrix 

wc have for thc interior nodes &, i = 1, ..., A- 1, 

N-1 

The constitutive equations can be all pu t  in the form 

$+ = g. 
W2 
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FIGURE 3. Same as in figure 2, but with Wi = 1 .  Note the transverse shear wave spreading 
in from the top plate and the established triangular horizontal velocity in ( b ) .  

They are updated using 

To update the stresses a t  the boundary node where CN = H ( t ) ,  we use the first-order 
finite-difference formula for the spatial derivatives of the stresses. After all the 
variables have been updated a t  time 712+1, a new film thickness is computed and a 
set of nodal points are selected (keeping the number of intervals N constant). The 
procedure is repeated until H = 0.4. The calculations were done on a computer that 
retains 15 significant figures. The codes are tested by reducing both Wi and Re to 
near zero. We found that, up to Wi and Re of order 0.1, our numerical results are 
indistinguishable from the first-order perturbation solutions. In  figures 1-7 we display 
the axisymmetric velocity fields a t  different values of Re and Wi.  I n  all cases we found 
that the similarity conditions (35) and (36) are valid to a t  least 4 significant figures 
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FIGURE 4 Same as  in figure 2, but u i th  u ' z  = 10 Note the 

thin boundary layer near the bottom plate 

(we only printed out four significant figures). Furthermore, the plane and axisymmetrio 
results are quite similar, and consequently we display only axisymmetric results. It 
is noteworthy that a straightforward evaluation of the loads using (18), ( 2 7 )  and 
finite-differenre formulae is very inaccurate. A better way is to  compute the spatial 
averages of (18) and ( 2 7 ) :  

and in the axisymmetric case 
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(b  ) 
7 = 0.1 0.2 0.3 0.4 0.5 

-f 

PIGCRE 5.  Same as in figure 2 ,  hut with Wi = 60. 

The integrations were carried out by the trapezoidal rule. Hamza & MacDonald (1981) 
used the same method to evaluate their loads, but with a weighting function 
(1  - Y / H )  </H instead of a uniform weighting function of unity. 

The effects of elasticity can be gauged from figures 2-7, where we display the 
vertical velocity - w/ V = -f and the horizontal velocity u/+r V = -f a t  a Reynolds 
number of 1 and a t  different Weissenberg numbers extending to  500. It is noticed 
that thcre is unavoidable numerical noise inf' (and hence in u), but the trend recorded 
in these figures is believed to be rcal. For small times we see a radial plug flow in the 
centre region of the bearing, and two boundary layers adjacent to the plates. A t  high 
Re W i  the boundary layer adjacent to the bottom plate is extremely thin compared 
with that adjacent to the top plate. Of interest is the load parameter w, which we 
have plotted in figure 8. Clearly a t  all times T > 0 an increase in the Weissenberg 
number (keeping Re constant) results in a decrease in w and thus the load-carrying 
capacity of the bearing. This conclusion agrees with Tanner (1965), who used a 
lubrication approach, and with Kramer (1974) ; both these authors neglected inertia. 
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FIGURE 6. Same as in figure 2, but with Wi = 100. 

5. Conclusions 
It seems remarkable that an unsteady, fully two-dimensional solution has been 

obtained to the problem in hand a t  very large Weissenberg numbers, especially in 
view of the problems encountered in the numerical solution of viscoelastic flow 
problems at medium Weissenberg numbers by finite-element and finite-difference 
methods. The reason that numerical instability is absent here is not known, but may 
be due to the constrained forms assumed for the variables, which avoid the need to 
consider the incompressibility constraint and the pressure field explicitly. 

There is no need to let fluid planes ‘buckle’ in the present problem: the solution 
is exact. The nature of the solution changes from the simple parabolic velocity 
distribution in low-Weissenberg-number creeping flow (fig. 2 b )  to  a form (e.g. figure 
66) in which transverse shear waves propagate across thc gap. We are not aware that 
these have been observed previously in numerical solutions of viscoelastic flows ; they 
are expected as shown by the solution to the suddenly accelerated plate (Rayleigh) 
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problem (Tanner 1962). In  terms of the dimensionless variables used in the present 
paper the transverse wave speed is (Re Wi)-? from the linear analysis of Tanner (1962). 
However, the fluid moves downwards a t  each point, and so the speed of propagation 
of a disturbance across the gap is better described (in dimensionless terms) as 
( W i  Re)-i +f. This agrees well with the numerical solutions; a t  very high Weissenberg- 
Reynolds numbers a disturbance is practically convected with the fluid. 

The edge effects which have been treated by setting the total force on the exit edge 
to zero need to be discussed. Some disturbance to  the flow inside the gap must be 
cxpecated if the edge effect was taken into account in a strict manner. At medium 
products of Re Wi one can argue that the flow is equivalent to a boundary-layer flow 
(high Re, low W i )  and the situation is similar to the flow leaving the rear edge of a 
wing or flat plate. I n  such cases the disturbance to the pressure field is negligible and 
thus we believe the solution is applicable to discussion of the load-bearing capacity 
of finite plates, provided that the mean-zero-force boundary condition is applied. 
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The solution shows a reduced load capacity relative to the Newtonian case, thus 
agreeing with previous less complete calculations. The experiments of Grimm (1975) 
show, however, an increased capacity relative to the shear-thinning inelastic compu- 
tation. Two ideas that have been put forward to explain this difference viscoelasticity 
and the increased resistance to  stretching flow (Metzner 1968) have been incorporated 
in the present solution and are therefore not thought to be very relevant. The 
remaining idea is that  ‘stiffer’ films result from the overshoot of shear stress when 
a sudden shear rate is applied to a viscoelastic sample (Bird, Armstrong & Hassager, 
1977). The Maxwell fluid used here does not possess this property, and further 
exploration of this idea needs to be made with another constitutive model which 
includes this effect and shear thinning. 
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